背景

熱圖(heatmap)

在RNA-seq資料中表示不同組織/細胞等樣本或重複之間不同基因或重複序列等的表達水平

差異

。同時也可以透過

聚類

的方式呈現不同樣本中不同基因的表達變化,從而呈現差異結果。而這種差異可以透過熱圖更好的可視化出來。

資料準備

在我們繪製熱圖之前,首先需要我們已經

標準化

後的RNA-seq

相對定量

結果。我們對於

標準化

存在不同的計算方式,目前主要的就是以下幾種:

1)

RPM(CPM)

=Total

exon reads

/ Mapped reads(Millions);

2)

RPKM

=Total exon reads/[Mapped reads(Millions)*Exon length(Kb)];

3)

RPKM

=Reads Per Kilobase Million; FPKM=Fragments(2×Reads) per Kilobase Million (RPKM is for single-end RNA-seq, FPKM is for paired-end RNA-seq);

Gene/Repeat name

sample1/2/3/。。。

A, B, C, 。。。

RPM(CPM)/RPKM/FPKM

繪製熱圖

一般的表達

矩陣

類似於下圖所示,我們可以將其儲存為。csv格式,便於R讀取(當然,也可以是。xlsx或者。txt格式)。最左側表示gene名稱,每一列代表一個樣本,而數字代表的就是表達量。我們就可以透過表達量來繪製我們需要的熱圖。

RNA-seq視覺化[2]——如何讓你的熱圖“熱”起來

forheatmap <- read。csv(file = ‘for_heatmap。csv’,header = T)

rownames(forheatmap) <- forheatmap[,1]

forheatmap <- forheatmap[,-1]

pheatmap::pheatmap(forheatmap,scale = ‘row’,cluster_col = F,show_rownames=T,angle_col = 0)

將我們的表達矩陣儲存在Rproject的資料夾中,再執行以上的R scripts,我們就可以得到我們的熱圖了!(是不是很簡單~)

RNA-seq視覺化[2]——如何讓你的熱圖“熱”起來

如果想要改變

熱圖

的顏色,顯示行名/列名,又或者想要變換其他的引數,可以在Console框中輸入

?pheatmap

來檢視pheatmap的所有引數,同時,也會有示例指令碼,可以嘗試練習以下。

Example

# Create test matrix

test = matrix(rnorm(200), 20, 10)

test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3

test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2

test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4

colnames(test) = paste(“Test”, 1:10, sep = “”)

rownames(test) = paste(“Gene”, 1:20, sep = “”)

# Draw heatmaps

pheatmap(test)

pheatmap(test, kmeans_k = 2)

pheatmap(test, scale = “row”, clustering_distance_rows = “correlation”)

pheatmap(test, color = colorRampPalette(c(“navy”, “white”, “firebrick3”))(50))

pheatmap(test, cluster_row = FALSE)

pheatmap(test, legend = FALSE)

# Show text within cells

pheatmap(test, display_numbers = TRUE)

pheatmap(test, display_numbers = TRUE, number_format = “\%。1e”)

pheatmap(test, display_numbers = matrix(ifelse(test > 5, “*”, “”), nrow(test)))

pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c(“0”,

“1e-4”, “1e-3”, “1e-2”, “1e-1”, “1”))

# Fix cell sizes and save to file with correct size

pheatmap(test, cellwidth = 15, cellheight = 12, main = “Example heatmap”)

pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = “test。pdf”)

# Generate annotations for rows and columns

annotation_col

= data。frame(

CellType = factor(rep(c(“CT1”, “CT2”), 5)),

Time = 1:5

rownames(annotation_col) = paste(“Test”, 1:10, sep = “”)

annotation_row = data。frame(

GeneClass = factor(rep(c(“Path1”, “Path2”, “Path3”), c(10, 4, 6)))

rownames(annotation_row) = paste(“Gene”, 1:20, sep = “”)

# Display row and color annotations

pheatmap(test, annotation_col = annotation_col)

pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)

pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row)

# Change angle of text in the columns

pheatmap(test, annotation_col = annotation_col,

annotation_row

= annotation_row, angle_col = “45”)

pheatmap(test, annotation_col = annotation_col, angle_col = “0”)

# Specify colors

ann_colors = list(

Time = c(“white”, “firebrick”),

CellType = c(CT1 = “#1B9E77”, CT2 = “#D95F02”),

GeneClass = c(Path1 = “#7570B3”, Path2 = “#E7298A”, Path3 = “#66A61E”)

pheatmap(test, annotation_col = annotation_col,

annotation_colors

= ann_colors, main = “Title”)

pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row,

annotation_colors = ann_colors)

pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2])

# Gaps in heatmaps

pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))

pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14),

cutree_col = 2)

# Show custom strings as row/col names

labels_row = c(“”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”,

“”, “”, “Il10”, “Il15”, “Il1b”)

pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)

# Specifying clustering from distance matrix

drows = dist(test, method = “minkowski”)

dcols = dist(t(test), method = “minkowski”)

pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)

# Modify ordering of the clusters using clustering callback option

callback = function(hc, mat){

sv = svd(t(mat))$v[,1]

dend = reorder(as。dendrogram(hc), wts = sv)

as。hclust(dend)

}

pheatmap(test, clustering_callback = callback)

## Not run:

# Same using dendsort package

library(dendsort)

callback = function(hc, 。。。){dendsort(hc)}

pheatmap(test, clustering_callback = callback)

## End(Not run)

想要了解更多scripts,可以在我的GitHub主頁檢視: