Kronecker-Weber theorems

We now state the

 (

global

)

Kronecker-Weber theorem。

\text{Theorem}

1.

Every

finite

abelian

 extension

 of

\mathbb{Q}

lies

 in

a

cyclotomic

field

\mathbb{Q}\left(\zeta_{m}\right).

\text{Theorem}

2.

Every

finite

abelian

extension

of

\mathbb{Q}_{p}

lies

in

a

cyclotomic

field

\mathbb{Q}_{p}\left(\zeta_{m}\right).

\text{Proposition}

3.

The

local

Kronecker

-

Weber

theorem

implies

the

global

Kronecker

-

Weber

theorem.

Proof.

Let

 K / \mathbb{Q}

be a finite abelian extension。 For each ramified prime

p

of

\mathbb{Q},

pick a prime

\mathfrak{p} \mid p

and let

K_{\mathfrak{p}}

be the completion of

K

at

\mathfrak{p}

(

the fact that

 K / \mathbb{Q}

is Galois means that every

\mathfrak{p} \mid p

is ramified with the same ramification index; it makes no difference which

\mathfrak{p}

we pick

).

We have

\operatorname{Gal}\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right) \simeq D_{\mathfrak{p}} \subseteq \operatorname{Gal}(K / \mathbb{Q}),

so

K_{\mathfrak{p}}

is an abelian extension of

\mathbb{Q}_\mathfrak{p}

and the local Kronecker-Weber theorem implies that

K_{\mathfrak{p}} \subseteq \mathbb{Q}_{p}\left(\zeta_{m_{p}}\right)

for some

m_{p} \in \mathbb{Z}_{\geq 1}.

Let

n_{p}:=v_{p}\left(m_{p}\right),

put

m:={\prod}_{p} p^{n_{p}}

(

this is a finite product

),

and let

L=K\left(\zeta_{m}\right).

We will show

L=\mathbb{Q}\left(\zeta_{m}\right),

which implies

K \subseteq \mathbb{Q}\left(\zeta_{m}\right).

The field

L=K \cdot \mathbb{Q}\left(\zeta_{m}\right)

is a compositum of Galois extensions of

 \mathbb{Q},

and is therefore Galois over

 \mathbb{Q}

with

\operatorname{Gal}(L / \mathbb{Q})

isomorphic to a subgroup of

\operatorname{Gal}(K / \mathbb{Q}) \times \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right),

hence abelian

(

as recalled below, the Galois group of a compositum

K_{1} \cdots K_{r}

of Galois extensions

K_{i} / F

is isomorphic to a subgroup of the direct product of the

\left.\operatorname{Gal}\left(K_{i} / F\right)\right).

Let

\mathfrak{q}

be a prime of

L

lying above a ramified prime

\mathfrak{p} \mid p;

as above, the completion

L_{\mathfrak{q}}

of

L

at

\mathfrak{q}

is a finite abelian extension of

\mathbb{Q}_{p},

since

L / \mathbb{Q}

is finite abelian, and we have

L_{\mathfrak{q}}=K_{\mathfrak{p}} \cdot \mathbb{Q}_{p}\left(\zeta_{m}\right).

Let

F_{\mathfrak{q}}

be the maximal unramified extension of

\mathbb{Q}_{p}

in

L_{\mathfrak{q}}.

Then

L_{\mathfrak{q}}/F_{\mathfrak{q}}

is totally ramified

and

\operatorname{Gal}\left(L_{\mathfrak{q}} / F_{\mathfrak{q}}\right)

is isomorphic to the inertia group

I_{p}:=I_{\mathfrak{q}} \subseteq \operatorname{Gal}(L / \mathbb{Q}),

(

the

I_{\mathfrak{q}}

all coincide because

L / \mathbb{Q}

is abelian

).

It follows from that

K_{\mathfrak{p}} \subseteq F_{\mathfrak{q}}\left(\zeta_{p^{n_{p}}}\right),

since

K_{\mathfrak{p}} \subseteq \mathbb{Q}_{p}\left(\zeta_{m_{p}}\right)

and

\mathbb{Q}_{p}\left(\zeta_{m_{p}} / p^{n_{p}}\right)

is unramified, and that

L_{\mathfrak{q}}=F_{\mathfrak{q}}\left(\zeta_{p^{n} p}\right),

since

\mathbb{Q}_{p}\left(\zeta_{m_{p}} / p^{n_{p}}\right)

is unramified。 Moreover, we have

F_{\mathfrak{q}} \cap \mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right)=\mathbb{Q}_{p},

since

\mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right) / \mathbb{Q}_{p}

is totally ramified, and it follows that

I_{p} \simeq \operatorname{Gal}\left(L_{\mathfrak{q}} / F_{\mathfrak{q}}\right) \simeq \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right) / \mathbb{Q}_{p}\right) \simeq\left(\mathbb{Z} / p^{n_{p}} \mathbb{Z}\right)^{\times}.

Now let

I

be the group generated by the union of the groups

I_{p} \subseteq \operatorname{Gal}(L / \mathbb{Q})

for

p \mid m.

Since

\operatorname{Gal}(L / \mathbb{Q})

is abelian, we have

\bigcup I_{p} \subseteq \prod I_{p},

thus

\# I \leq \prod_{p \mid m} \# I_{p}=\prod_{p \mid m} \#\left(\mathbb{Z} / p^{n_{p}} \mathbb{Z}\right)^{\times}=\prod_{p \mid m} \phi\left(p^{n_{p}}\right)=\phi(m)=\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right].

Each inertia field

L^{I_{p}}

is unramified at

p,

as is

L^{I} \subseteq L^{I_{p}}.

So

L^{I} / \mathbb{Q}

is unramified, and therefore

L^{I}=\mathbb{Q},

Thus

[L: \mathbb{Q}]=\left[L: L^{I}\right]=\# I \leq\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right],

and

\mathbb{Q}\left(\zeta_{m}\right) \subseteq L, \text { so } L=\mathbb{Q}\left(\zeta_{m}\right)

as claimed and

K \subseteq L=\mathbb{Q}\left(\zeta_{m}\right).

\square

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic extensions of prime-power degree。 Recall that if

L_{1}

and

L_{2}

are two Galois extensions of a field

K

then their compositum

L:=L_{1} L_{2}

is Galois over

K

with Galois group

\operatorname{Gal}(L / K) \simeq\{\left(\sigma_{1}, \sigma_{2}\right):\left.\sigma_{1}\right|_{L_{1} \cap L_{2}}=\left.\sigma_{2}\right|_{L_{1} \cap L_{2}}\} \subseteq \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right).

The inclusion on the

\text{RHS}

is an equality if and only if

L_{1} \cap L_{2}=K.

Conversely, if

\operatorname{Gal}(L / K) \simeq H_{1} \times H_{2}

then by defining

L_{2}:=L^{H_{1}}

and

L_{1}:=L^{H_{2}}

we have

L=L_{1} L_{2}

with

L_{1} \cap L_{2}=K,

and

\operatorname{Gal}\left(L_{1} / K\right) \simeq H_{1}

and

\operatorname{Gal}\left(L_{2} / K\right) \simeq H_{2}.

It follows from the structure theorem for finite abelian groups that we may decompose any finite abelian extension

L / K

into a compositum

L=L_{1} \cdots L_{n}

of linearly disjoint cyclic extensions

L_{i} / K

of prime-power degree。 If each

L_{i}

lies in a cyclotomic field

\mathbb{Q}\left(\zeta_{m_{i}}\right),

then so does

L.

Indeed,

L \subseteq \mathbb{Q}\left(\zeta_{m_{1}}\right) \cdots \mathbb{Q}\left(\zeta_{m_{n}}\right)=\mathbb{Q}\left(\zeta_{m}\right),

where

m:=m_{1} \cdots m_{n}.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions

K / \mathbb{Q}_{p}

of prime power degree

\ell^{r}.

There two distinct cases:

\ell \neq p

and

\ell=p .

Kronecker-Weber theorem for

\ell \neq p

\text{Proposition}

4.

Let

K / \mathbb{Q}_{p}

be

a

cyclic

extension

of

degree

\ell^{r}

for

 some

 prime

\ell \neq p.

Then

K

lies

 in

 a

cyclotomic

field

\mathbb{Q}_{p}(\zeta_{m}).

Proof.

Let

F

be the maximal unramified extension of

\mathbb{Q}_{p}

in

K;

then

F=\mathbb{Q}_{p}\left(\zeta_{n}\right)

for some

n \in \mathbb{Z}_{\geq 1},

The extension

K /F

is totally ramified, and it must be tamely ramified, since the ramification index is a power of

\ell \neq p.

we have

K=F(\pi^{1 / e})

for some uniformizer

\pi,

with

e = [K : F].

We may assume that

\pi=-p u

for some

u \in \mathcal{O}_{F}^{\times},

since

F/ \mathbb{Q}_{p}

is unramified: if

\mathfrak{q} \mid p

is the maximal ideal of

\mathcal{O}_{F}

then the valuation

v_{\mathfrak{q}}

extends

v_{p}

with index

e_{\mathfrak{q}}=1,

so

v_{\mathfrak{q}}(-p u)=v_{p}(-p)=1.

The field

K=F(\pi^{1 / e})

lies in the compositum of

F((-p)^{1 / e})

and

F(u^{1 / e}),

and we will show that both fields lie in a cyclotomic extension of

\mathbb{Q}_{p}.

The extension

F(u^{1 / e}) / F

is unramified, since

v_{\mathfrak{q}}\left(\operatorname{disc}\left(x^{e}-u\right)\right)=0

for

p \nmid e,

so

F(u^{1 / e}) / \mathbb{Q}_{p}

is unramified and

F(u^{1 / e})=\mathbb{Q}_{p}(\zeta_{k})

for some

k \in \mathbb{Z}_{\geq 1}.

The field

K(u^{1 / e})=K \cdot \mathbb{Q}_{p}(\zeta_{k})

is a compositum of abelian extensions, so

K(u^{1 / e}) / \mathbb{Q}_{p}

is abelian, and it contains the subexten-sion

\mathbb{Q}_{p}((-p)^{1 / e}) / \mathbb{Q}_{p},

which must be Galois

 (

since it lies in an abelian extension

)

and totally ramified

(

since it is an Eisenstein extension

).

The field

\mathbb{Q}_{p}((-p)^{1 / e})

con-tains

\zeta_{e}

(

take ratios of roots of

x^{e}+p

)

and is totally ramified, but

\mathbb{Q}_{p}(\zeta_{e}) / \mathbb{Q}_{p}

is unramified

(

since

p✗

e

),

so we must have

\mathbb{Q}_{p}(\zeta_{e})=\mathbb{Q}_{p}.

Thus

e|(p-1),

\mathbb{Q}_{p}((-p)^{1 / e}) \subseteq \mathbb{Q}_{p}((-p)^{1 /(p-1)})=\mathbb{Q}_{p}(\zeta_{p}).

It follows that

F((-p)^{1 / e})=F \cdot \mathbb{Q}_{p}((-p)^{1 / e}) \subseteq \mathbb{Q}_{p}(\zeta_{n}) \cdot \mathbb{Q}_{p}(\zeta_{p}) \subseteq \mathbb{Q}_{p}(\zeta_{n p}).

We then have

K \subseteq F(u^{1 / e}) \cdot F((-p)^{1 / e}) \subseteq \mathbb{Q}(\zeta_{k}) \cdot \mathbb{Q}(\zeta_{n p}) \subseteq \mathbb{Q}(\zeta_{k n p})

and may take

m = knp.

\square

\text{Lemma}

5.

For

 any

prime

p

we

have

\mathbb{Q}_{p}((-p)^{1 /(p-1)})=\mathbb{Q}_{p}(\zeta_{p}).

Proof.

Let

\alpha=(-p)^{1 /(p-1)}.

Then

\alpha

is a root of the Eisenstein polynomial

x^{p-1}+p,

so the extension

\mathbb{Q}_{p}(-p)^{1 /(p-1)}=\mathbb{Q}_{p}(\alpha)

is totally ramified of degree

p-1,

and

\alpha

is a uniformizer Let

\pi=\zeta_{p}-1 .

The minimal polynomial of

\pi

is

f(x):=\frac{(x+1)^{p}-1}{x}=x^{p-1}+p x^{p-2}+\cdots+p,

which is Eisenstein, so

\mathbb{Q}_{p}(\pi)=\mathbb{Q}_{p}(\zeta_{p})

is also totally ramified of degree

p -1,

and

\pi

is a uniformizer。 We have

u:=-\pi^{p-1} / p \equiv 1 \bmod \pi,

so

u

is a unit in the ring of integers of

\mathbb{Q}_{p}(\zeta_{p}).

If we now put

g(x)=x^{p-1}-u

then

g(1) \equiv 0 \bmod \pi

and

g^{\prime}(1)=p-1 \not \equiv 0 \bmod \pi,

so we can lift

1

to a root

\beta

of

g(x)

in

\mathbb{Q}_{p}(\zeta_{p}).

We then have

p \beta^{p-1}=p u=-\pi^{p-1},

so

(\pi / \beta)^{p-1}+p=0,

and therefore

\pi / \beta \in \mathbb{Q}_{p}\left(\zeta_{p}\right)

is a root of the minimal polynomial of

\alpha.

Since

\mathbb{Q}_{p}(\zeta_{p}).

is Galois, this implies that

\alpha \in \mathbb{Q}_{p}(\zeta_{p}),

and since

\mathbb{Q}_{p}(\alpha )

and

\mathbb{Q}_{p}(\zeta_{p})

both have degree

p - 1,

the two fields coincide。

\square

To complete the proof of the local Kronecker-Weber theorem, we need to address the case

\ell=p.

Kummer theory

Let

n

be a positive integer and let

K

be a field of characteristic prime to

n

that contains a primitive

n

th root of unity

\zeta_{n}.

While we are specifically interested in the case where

K

is a local or global field, in this section

K

can be any field that satisfies these conditions。

For any

a \in K,

the field

L=K(\sqrt[n]{a})

is the splitting field of

f(x)=x^{n}-a

over

K;

the notation

\sqrt[n]{a}

denotes a particular

n

th root of

a,

but it does not matter which root we pick because all the

n

th roots of

a

lie in

L(

if

f(\alpha)=f(\beta)=0

then

\alpha / \beta \in \zeta_{n}^{i} \in K

for some

0 \leq i<n

and

K(\alpha)=K(\beta)).

The polynomial

f(x)

is separable, since

n

is prime to the characteristic of

K,

so L is a Galois extension of

K,

and

\operatorname{Gal}(L / K)

is cyclic, since we have an injective homomorphism

\begin{aligned} \operatorname{Gal}(L / K) & \hookrightarrow\left\langle\zeta_{n}\right\rangle \simeq \mathbb{Z} / n \mathbb{Z} \\ \sigma & \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}. \end{aligned}

This homomorphism is an isomorphism if and only if

x^n - a

is irreducible。

Kummer’s key observation is that the converse holds。 In order to prove this we firstrecall a basic (but often omitted) lemma from Galois theory。

\text{Lemma}

6.

Let

L/K

be

 a

 finite

extension

of

fields.

The

set

\operatorname{Aut}_{K}(L)

is

a

linearly

independent

subset

 of

the

L

-

vector

space

of

functions

L \rightarrow L.

Proof.

Suppose not。 Let

f:=c_{1} \sigma_{1}+\cdots+c_{r} \sigma_{r}=0

with

c_{i} \in L, \sigma_{i} \in \operatorname{Aut}_{K}(L),

and

r

minimal; we must have

r > 1,

the

c_{i}

nonzero, and the

\sigma_{i}

distinct。 Choose

\alpha \in L

so

\sigma_{1}(\alpha) \neq \sigma_{r}(\alpha)

 (

possible since

\sigma_{1} \neq \sigma_{r}

).

We have

f(\beta)=0

for all

\beta\in L,

and the same applies to

f(\alpha \beta)-\sigma_{1}(\alpha) f(\beta),

which yields a shorter relation

c_{2}^{\prime} \sigma_{2}+\cdots+c_{r}^{\prime} \sigma_{r}=0,

where

c_{i}^{\prime}=c_{i} \sigma_{i}(\alpha)-c_{i} \sigma_{1}(\alpha)

with

c_{1}^{\prime}=0,

which is nontrivial because

c_{r}^{\prime} \neq 0,

a contradiction。

\square

\text{Corollary}

7.

Let

L/K

be

a

 cyclic

 field

extension

of

degree

n

with

 Galois

group

\langle\sigma\rangle

and

suppose

L

contains

an

nth

 root

 of

unity

\zeta_{n}.

Then

\sigma(\alpha)=\zeta_{n} \alpha

for

some

\alpha \in L.

Proof.

The automorphism

\sigma

is a linear transformation of

L

with characteristic polynomial

x^n - 1;

by

\text{Lemma}

6,

this must be its minimal polynomial, since

\{1, \sigma^{1}, \ldots, \sigma^{n-1}\}

is linearly independent。 Therefore

\zeta_{n}

is eigenvalue of

\sigma,

and the lemma follows。

\square

\text{Remark}

8.

\text{Corollary}

7

is a special case of Hilbert’s Theorem 90, which re-places

\zeta_{n}

with any element

u

of norm

\mathrm{N}_{L / K}(u)=1;

for example。

\text{Lemma}

9.

Let

K

be

a

field,

let

n \geq 1

be

prime

to

the

characteristic

 of

K,

and

assume

\zeta_{n} \in K.

If

L/K

is

 a

cyclic

 extension

of

 degree

n

then

L=K(\sqrt[n]{a})

for

 some

a \in K.

Proof.

Let

L/K

be a cyclic extension of degree

n

with

\operatorname{Gal}(L / K)=\langle\sigma\rangle.

By

\text{Corollary}

7,

there exists an element

\alpha \in L

for which

\sigma(\alpha)=\zeta_{n} \alpha.

We have

\sigma\left(\alpha^{n}\right)=\sigma(\alpha)^{n}=\left(\zeta_{n} \alpha\right)^{n}=\alpha^{n},

thus

a=\alpha^{n}

is invariant under the action of

\langle\sigma\rangle=\operatorname{Gal}(L / K)

and therefore lies in

K.

Moreover, the orbit

\{\alpha, \zeta_{n} \alpha, \ldots, \zeta_{n}^{n-1} \alpha\}

of

\alpha

under the action of

\operatorname{Gal}(L / K)

has order

n,

so

L=K(\alpha)=K(\sqrt[n]{a})

as desired。

\text{Definition}

10.

Let

K

be a field with algebraic closure

\overline{K},

let

n \geq 1

be prime to the characteristic of

K,

and assume

\zeta_{n} \in K.

The

Kummer

 pairing

is the map

\begin{aligned} \langle\cdot, \cdot\rangle: \operatorname{Gal}(\overline{K} / K) \times K^{\times} & \rightarrow\left\langle\zeta_{n}\right\rangle \\ (\sigma, a) & \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}} \end{aligned}

where

\sqrt[n]{a}

is any

n

th root of

a

in

\in\overline{K}^{\times} .

If

\alpha

and

\beta

are two nth roots of

a,

then

(\alpha / \beta)^{n}=1,

so

\alpha / \beta \in\left\langle\zeta_{n}\right\rangle \subseteq K

is fixed by

\sigma

and

\sigma(\beta) / \beta=\sigma(\beta) / \beta \cdot \sigma(\alpha / \beta) /(\alpha / \beta)=\sigma(\alpha) / \alpha,

so the value of

\langle\sigma, a\rangle

does not depend on the choice of

\sqrt[n]{a}.

If

a \in K^{\times n},

then

\langle\sigma, a\rangle= 1

for all

\sigma \in \operatorname{Gal}(\overline{K} / K),

so the Kummer pairing depends only on the image of

a

in

K^{\times} / K^{\times n};

thus we may also view it as a pairing on

\operatorname{Gal}(\overline{K} / K) \times K^{\times} / K^{\times n}.

\text{Theorem}

11.

Let

K

be

a

 field,

 let

n \geq 1

be

prime

to

 the

characteristic

of

K

with

\zeta_{n} \in K.

The

Kummer

 pairing

 induces

an

isomorphism

\begin{aligned} \Phi: K^{\times} / K^{\times n} & \rightarrow \operatorname{Hom}\left(\operatorname{Gal}(\overline{K} / K),\left\langle\zeta_{n}\right\rangle\right) \\ a & \mapsto(\sigma \mapsto\langle\sigma, a\rangle). \end{aligned}

Proof.

For each

a \in K^{\times}-K^{\times n},

if we pick an

n

th root

\alpha \in \overline{K}

of

a

then the extension

K(\alpha) / K

will be non-trivial and some

\sigma \in \operatorname{Gal}(\overline{K} / K)

must act nontrivially on

\alpha.

For this

\sigma

we have

\langle\sigma, a\rangle \neq 1,

so

a \notin \operatorname{ker} \Phi ;

thus

\Phi

is injective。

Now let

f: \operatorname{Gal}(\overline{K} / K) \rightarrow\left\langle\zeta_{n}\right\rangle

be a homomorphism, and put

d:=\# \operatorname{im} f, H:=\operatorname{ker} f,

and

L:=\overline{K}^{H}.

Then

\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(\overline{K} / K) / H \simeq \mathbb{Z} / d \mathbb{Z},

so

L/K

is a cyclic extension of degree

d,

and

\text{Lemma}

9

implies that

L=K(\sqrt[d]{a})

for some

a \in K.

If we put

e = n/d

and consider the homomorphisms

\Phi(a^{m e})

for

m \in(\mathbb{Z} / d \mathbb{Z})^{\times},

these homomorphisms are all distinct

 (

because the

a^{m e}

are distinct modulo

K^{\times n}

and

\Phi

is injective

),

and they all have the same kernel and image as

f

(

their kernels have the same fixed field

L

because

L

contains all the

d

th roots of

a).

There are

\#(\mathbb{Z} / d \mathbb{Z})^{\times}=\# \operatorname{Aut}(\mathbb{Z} / d \mathbb{Z})

distinct isomorphisms

\operatorname{Gal}(\overline{K} / K) / H \simeq \mathbb{Z} / d \mathbb{Z},

one of which corresponds to

f,

and each corresponds to one of the

\Phi(a^{m e}).

It follows that

f = \Phi(a^{m e})

for some

m \in(\mathbb{Z} / d \mathbb{Z})^{\times},

thus

\Phi

is surjective。

\square

Given a finite subgroup

A

of

K^{\times} / K^{\times n},

we can choose

a_{1}, \ldots, a_{r} \in K^{\times}

so that the images

\overline{a}_{i}

of the

{a}_{i}

in

K^{\times} / K^{\times n}

form a basis for the abelian group

A;

this means

A=\left\langle\overline{a}_{1}\right\rangle \times \cdots \times\left\langle\overline{a}_{r}\right\rangle \simeq \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z},

where

n_{i}|n

is the order of

\overline{a}_{i}

in

A.

For each

{a}_{i},

the fixed field of the kernel of

\Phi\left(\overline{a}_{i}\right)

is a cyclic extension of

K

isomorphic to

L_{i}:=K(\sqrt[n_i]{a_i}),

as in the proof of

\text{Theorem }

11.

The fields

L_{i}

are linearly disjoint over

K

(

because the

{a_i}

correspond to independent generators of

A),

and their compositum

L = K(\sqrt[n_1]{a_1}, \cdots\sqrt[n_r]{a_r})

has Galois group

\operatorname{Gal}(L / K) \simeq A,

an abelian group whose exponent divides

n;

such fields

L

are called

n

-

Kummer

extensions

of

K.

Conversely, given an

n

-Kummer extension

L/K,

we can iteratively apply

\text{Lemma}

9

to put

L

in the form

L = K(\sqrt[n_1]{a_1}, \cdots,\sqrt[n_r]{a_r})

with each

a_{i} \in K^{\times}

and

n_{i}|n ,

and the images of the

{a}_{i}

in

K^{\times} / K^{\times n}

then generate a subgroup

A

corresponding to

L

as above。We thus have a 1-to-1 correspondence between finite subgroups of

K^{\times} / K^{\times n}

and (finite)

n

-Kummer extensions of

K

(

this correspondence also extends to infinite subgroups provided we put a suitable topology on the groups

).

So far we have been assuming that

K

contains all the

n

th roots of unity。 To help handle situations where this is not necessarily the case, we rely on the following lemma。

\text{Lemma}

12.

Fix

n \in \mathbb{Z}_{>1},

let

F

be

 a

 field

of

characteristic

 prime

 to

n,

let

K=F(\zeta_{n}),

and

let

L=K(\sqrt[n]{a})

for

 some

a \in K^{\times} .

Define

the

homomorphism

\omega: \operatorname{Gal}(K / F) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}

by

 \zeta_{n}^{\omega(\sigma)}=\sigma\left(\zeta_{n}\right).

 If

L/F

is

abelian

 then

\sigma(a) / a^{\omega(\sigma)} \in K^{\times n}

for

all

\sigma \in \operatorname{Gal}(K / F).

Proof.

Let

G=\operatorname{Gal}(L / F),

let

H=\operatorname{Gal}(L / K) \subseteq G,

and let

A

be the subgroup of

K^{\times} / K^{\times n}

generated by

a.

The Kummer pairing induces a bilinear pairing

H \times A \rightarrow\left\langle\zeta_{n}\right\rangle

that is compatible with the Galois action of

\operatorname{Gal}(K / F) \simeq G / H.

In particular, we have

\langle h, a^{\omega(\sigma)}\rangle=\langle h, a\rangle^{\omega(\sigma)}=\sigma(\langle h, a\rangle)=\langle h^{\sigma}, \sigma(a)\rangle=\langle h, \sigma(a)\rangle

for all

\sigma \in \operatorname{Gal}(K / F)

and

h \in H;

the Galois action on

H

is by conjugation

 (

lift

\sigma

to

G

and conjugate there

),

but it is trivial because

G

is abelian

(

so

h^{\sigma}=h).

The isomorphism

\Phi

induced by the Kummer pairing is injective,so

a^{\omega(\sigma)} \equiv \sigma(a) \bmod K^{\times n}.

\square

The local Kronecker-Weber theorem for

\ell=p>2

We are now ready to prove the local Kronecker-Weber theorem in the case

\ell=p>2.

\text{Theorem}

13.

Let

K / \mathbb{Q}_{p}

be

a

cyclic

extension

of

odd

degree

p^{r}.

Then

K

lies

 in

a

cyclotomic

 field

\mathbb{Q}_{p}(\zeta_{m}).

Proof.

There are two obvious candidates for

K,

namely, the cyclotomic field

\mathbb{Q}_{p}(\zeta_{p^{p^r}-1}),

which is an unramified extension of degree

p^{r},

and the index

p-1

subfield of the cyclotomic field

\mathbb{Q}_{p}(\zeta_{p^{r+1}}),

which is a totally ramified extension of degree

p^{r}

(

the

p^{r+1}

-cyclotomic polynomial

\Phi_{p^{r+1}}(x)

has degree

\phi(p^{r+1})=p^{r}(p-1)

and remains irreducible over

\mathbb{Q}_{p}).

If

K

is contained in the compositum of these two fields then

K \subseteq \mathbb{Q}_{p}(\zeta_{m}),

where

m:=(p^{p^{r}}-1)(p^{r+1})

and the theorem holds。 Otherwise, the field

K(\zeta_{m})

is a Galois extension of

\mathbb{Q}_{p}

with

\operatorname{Gal}\left(K(\zeta_{m} / \mathbb{Q}_{p}\right) \simeq \mathbb{Z} / p^{r} \mathbb{Z} \times \mathbb{Z} / p^{r} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z} / p^{s} \mathbb{Z},

for some

s > 0;

the first factor comes from the Galois group of

\mathbb{Q}_{p}(\zeta_{p^{p^r}-1}),

the second two factors come from the Galois group of

\mathbb{Q}_{p}(\zeta_{p^{r+1}})

 (

note

\mathbb{Q}_{p}(\zeta_{p^{r+1}}) \cap \mathbb{Q}_{p}(\zeta_{p^{p^r}-1})=\mathbb{Q}_{p}

),

and the last factor comes from the fact that we are assuming

K \nsubseteq \mathbb{Q}_{p}(\zeta_{m}),

so

\operatorname{Gal}(K(\zeta_{m}) / \mathbb{Q}_{p}(\zeta_{m}))

is nontrivial and must have order

p^{s}

for some

s \in[1, r],

It follows that the abelian group

\operatorname{Gal}(K(\zeta_{m}) / \mathbb{Q}_{p})

has a quotient isomorphic to

(\mathbb{Z} / p \mathbb{Z})^{3},

and the subfield of

K(\zeta_{m})

corresponding to this quotient is an abelian extension of

\mathbb{Q}_{p}

with Galois group isomorphic

(\mathbb{Z} / p \mathbb{Z})^{3}.

By

\text{Lemma}

14

below, no such field exists。

\square

To prove that

\mathbb{Q}_{p}

admits no

(\mathbb{Z} / p \mathbb{Z})^{3}

-extensions our strategy is to use Kummer theory to show that the corresponding subgroup of

\mathbb{Q}_{p}(\zeta_{p})^{\times} / \mathbb{Q}_{p}(\zeta_{p})^{\times p}

given by

\text{Theorem}

11

must have

p

-rank

2

and therefore cannot exist。 For an alternative proof that uses higher ramification groups instead of Kummer theory。

\text{Lemma}

14.

For

p > 2

no

extension

of

\mathbb{Q}_{p}

has

Galois

 group

 isomorphic

 to

(\mathbb{Z} / p \mathbb{Z})^{3}.

Proof.

Suppose for the sake of contradiction that

K

is an extension of

\mathbb{Q}_{p}

with Galois group

\operatorname{Gal}(K / \mathbb{Q}_{p}) \simeq(\mathbb{Z} / p \mathbb{Z})^{3}.

Then

K/\mathbb{Q}_{p}

is linearly disjoint from

\mathbb{Q}_{p}(\zeta_{p}) / \mathbb{Q}_{p},

since the order of

G:=\operatorname{Gal}(\mathbb{Q}_{p}(\zeta_{p}) / \mathbb{Q}_{p}) \simeq(\mathbb{Z} / p \mathbb{Z})^{\times}

is not divisible by

p,

and

\operatorname{Gal}(K(\zeta_{p}) / \mathbb{Q}_{p}(\zeta_{p})) \simeq(\mathbb{Z} / p \mathbb{Z})^{3}

is a

_{p}

-Kummer extension。 There is thus a subgroup

A \subseteq \mathbb{Q}_{p}(\zeta_{p})^{\times} / \mathbb{Q}_{p}(\zeta_{p})^{\times p}

isomorphic to

(\mathbb{Z} / p \mathbb{Z})^{3},

for which

K(\zeta_{p})=\mathbb{Q}_{p}(\zeta_{p}, A^{1 / p}),

where

A^{1 / p}:=\{\sqrt[p]{a}: a \in A\}

(

here we identify elements of

A

by representatives in

\mathbb{Q}_{p}(\zeta_{p})^{\times}

that are determined only up to

p

th powers

).

For any

a \in A,

the extension

\mathbb{Q}_{p}(\zeta_{p}, \sqrt[p]{a}) / \mathbb{Q}_{p}

is abelian, so by

\text{Lemma}

12,

we have

\sigma(a) / a^{\omega(\sigma)} \in \mathbb{Q}_{p}(\zeta_{p})^{\times p}

(A)

for all

\sigma \in G,

where

\omega: G \stackrel{\sim}{\longrightarrow}(\mathbb{Z} / p \mathbb{Z})^{\times}

is the isomorphism defined by

\sigma(\zeta_{p})=\zeta_{p}^{\omega(\sigma)}.

The field

\mathbb{Q}_{p}(\zeta_{p})

is a totally tamely ramified extension of

\mathbb{Q}_{p}

of degree

p-1

with residue field

\mathbb{Z} / p \mathbb{Z};

as shown in the proof of

\text{Lemma}

5,

we may take

\pi:=\zeta_{p}-1

as a uniformizer。

For each

a \in A

we have

v_{\pi}(a)=v_{\pi}(\sigma(a)) \equiv \omega(\sigma) v_{\pi}(a) \bmod p,

thus

(1-\omega(\sigma)) v_{\pi}(a) \equiv 0 \bmod p,

for all

\sigma \in G,

hence for al

\omega(\sigma) \in \omega(G)=(\mathbb{Z} / p \mathbb{Z})^{\times};

for

p > 2,

this implies

v_{\pi}(a) \equiv 0 \bmod p.

Now

a

is determined only up to

p

th-powers, so after multiplying by

{\pi}{^{-}}^v{^\pi{^{(a)}}}

we may assume

v_{\pi}(a)=0,

and after multiplying by a suitable power of

\zeta_{p-1}^{p}=\zeta_{p-1},

we may assume

a \equiv 1\bmod \pi,

since the image of

\zeta_{p-1}

generates the multiplicative group

(\mathbb{Z} / p \mathbb{Z})^{\times}

of the residue field。

We may thus assume that

A \subseteq U_{1} / U_{1}^{p},

where

U_{1}:=\{u \equiv 1 \bmod \pi\}.

Each

u \in U_{1}

can be written as a power series in

\pi

with integer coefficients in

[0, p-1]

and constant coefficient

1.

We have

\zeta_{p} \in U_{1},

since

\zeta_{p}= 1 + π,

and

\zeta_{p}^{b}=1+b \pi+O\left(\pi^{2}\right)

for integers

b \in [0, p - 1].

For

a \in A\subseteq U_{1},

we can choose

b

so that for some integer

c \in [0, p - 1]

and

e \in \mathbb{Z}_{\geq 2}

we have

a=\zeta_{p}^{b}(1+c \pi^{e}+O(\pi^{e+1})).

For

\sigma \in G

we have

\frac{\sigma(\pi)}{\pi}=\frac{\sigma(\zeta_{p}-1)}{\zeta_{p}-1}=\frac{\zeta_{p}^{\omega(\sigma)}-1}{\zeta_{p}-1}=\zeta_{p}^{\omega(\sigma)-1}+\cdots+\zeta_{p}+1 \equiv \omega(\sigma) \bmod \pi,

since each term in the sum is congruent to

1

modulo

\pi=(\zeta_{p}-1);

here we are representing

\omega(\sigma) \in(\mathbb{Z} / p \mathbb{Z})^{\times}

as an integer in

[1, p -1].

Thus

\sigma(\pi) \equiv \omega(\sigma) \pi \bmod \pi^{2}

and

\sigma(a)=\zeta_{p}^{b \omega(\sigma)}(1+c \omega(\sigma)^{e} \pi^{e}+O(\pi^{e+1})).

We also have

a^{\omega(\sigma)}=\zeta_{p}^{b \omega(\sigma)}(1+c \omega(\sigma) \pi^{e}+O(\pi^{e+1})).

As we showed for

a

above, any

u \in U_{1}

can be written as

u=\zeta_{p}^{b} u_{1}

with

u_{1} \equiv 1 \bmod \pi^{2}.

Each interior term in the binomial expansion of

u_{1}^{p}=\left(1+O(\pi^{2}\right))^{p}

other than leading

1

is a multiple of

p \pi^{2}

with

v_{\pi}(p \pi^{2})=p-1+2=p+1,

and it follows that

u^{p}=u_{1}^{p} \equiv 1 \bmod \pi^{p+1}.

Thus every element of

U_{1}^{p}

is congruent to

1

modulo

\pi^{p+1},

and as you will show on the problem set, the converse holds, that is,

U_{1}^{p}=\{u \equiv 1 \bmod \pi^{p+1}\}.

We know from

(A)

that

\sigma(a) / a^{\omega(\sigma)} \in U_{1}^{p},

so

\sigma(a)=a^{\omega(\sigma)}(1+O\left(\pi^{p+1}\right))

and therefore

\sigma(a) \equiv a^{\omega(\sigma)} \bmod \pi^{p+1}.

For

e ≤ p

this is possible only if

\omega(\sigma)=\omega(\sigma)^{e}

for every

\sigma \in G,

equivalently, for every

\omega(\sigma) \in \sigma(G)=(\mathbb{Z} / p \mathbb{Z})^{\times},

but then

e\equiv 1\bmod(p - 1)

and we must have

e ≥ p,

since

e ≥ 2.

We have shown that every

a \in A

is represented by an element

\zeta_{p}^{b}(1+c \pi^{p}+O(\pi^{p+1})) \in U_{1}

with

b, c \in\mathbb{Z} ,

and therefore lies in the subgroup of

U_{1} / U_{1}^{p}

generated by

\zeta_{p}

and

 (1 + π^{p}),

which is an abelian group of exponent

p

generated by

2

elements, hence isomorphic to a subgroup of

(\mathbb{Z} / p \mathbb{Z})^{2}.

But this contradicts

A \simeq(\mathbb{Z} / p \mathbb{Z})^{3}.

\square

\text{Remark}

15.

In the proof of

\text{Lemma}

14

above, the elements of

\mathbb{Q}_{p}(\zeta_{p})^{\times} / \mathbb{Q}_{p}(\zeta_{p})^{\times p}

that lie in

A

are quite special。 For most

a \in \mathbb{Q}_{p}(\zeta_{p})^{\times}

the extension

\mathbb{Q}_{p}(\zeta_{p}, \sqrt[p]{a}) / \mathbb{Q}_{p}

will not be abelian, even though the extensions

\mathbb{Q}_{p}(\sqrt[p]{a}) / \mathbb{Q}_{p}(\zeta_{p})

and

\mathbb{Q}_{p}(\zeta_{p}) / \mathbb{Q}_{p}

both are, and we typically will not have

v_{\pi}(a) \equiv 0 \bmod p

(

consider

a = π

).

The key point is that we started with an abelian extension

K / \mathbb{Q}_{p},

so

K(\zeta_{p})=K \cdot \mathbb{Q}_{p}(\zeta_{p})

is an abelian extension containing

A^{1 / p};

this ensures that for

a \in A

the fields

\mathbb{Q}_{p}(\zeta_{p}, \sqrt[p]{a})

are abelian。

\text{Remark}

16.

There is an alternative proof to

\text{Lemma}

14

that is much more explicit。One can show that for

p > 2

the field

\mathbb{Q}_{p}

admits exactly

p + 1

cyclic extensions of degree

p:

the unramified extension

\mathbb{Q}_{p}(\zeta_{p^{p}-1})

and the extensions

\mathbb{Q}_{p}[x] /(x^{p}+p x^{p-1}+p(1+a p)),

for integers

a \in[0, p-1];

This implies that

\mathbb{Q}_{p}

cannot have a

(\mathbb{Z} / p \mathbb{Z})^{3}

extension, since this would imply the existence of

p^{2}+p+1

cyclic extensions of degree

p,

one for each index

p

subgroup of

(\mathbb{Z} / p \mathbb{Z})^{3}.

For

p = 2

there is an extension of

\mathbb{Q}_{2}

with Galois group isomorphic to

(\mathbb{Z} / 2 \mathbb{Z})^{3},

the cyclotomic field

\mathbb{Q}_{2}(\zeta_{24})=\mathbb{Q}_{2}(\zeta_{3}) \cdot \mathbb{Q}_{2}(\zeta_{8}),

so the proof we used for

p > 2

will not work。 However we can apply a completely analogous argument。

\text{Theorem}

17.

Let

K/\mathbb{Q}_{2}

be

a

cyclic

extension

of

 degree

2^{r}.

Then

K

lies

in

a

cyclotomic

field

\mathbb{Q}_{2}(\zeta_{m}).

Proof.

The unramified cyclotomic field

\mathbb{Q}_{2}(\zeta_{2^{2^{r}}-1})

has Galois group

\mathbb{Z} / 2^{r} \mathbb{Z},

and the totally ramified cyclotomic field

\mathbb{Q}_{2}(\zeta_{2^{r}+2})

has Galois group

\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r} \mathbb{Z}

(

up to isomorphism

).

Let

m=(2^{2^{r}}-1)(2^{r+2}).

If

K

is not contained in

\mathbb{Q}_{2}(\zeta_{m})

then

\operatorname{Gal}(K(\zeta_{m}) / \mathbb{Q}_{2}) \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 2^{r} \mathbb{Z})^{2} \times \mathbb{Z} / 2^{s} \mathbb{Z} & \text { with } 1 \leq s \leq r \\ \text { or } \\ (\mathbb{Z} / 2^{r} \mathbb{Z})^{2} \times \mathbb{Z} / 2^{s} \mathbb{Z} \quad &\text { with } 2 \leq s \leq r\end{cases}

and thus admits a quotient isomorphic to

(\mathbb{Z} / 2 \mathbb{Z})^{4}

or

(\mathbb{Z} / 4 \mathbb{Z})^{3}.

By

\text{Lemma}

18

below, no extension of

\mathbb{Q}_{2}

has either of these Galois groups, thus

K

must lie in

\mathbb{Q}_{2}(\zeta_{m}).

\square

\text{Lemma}

18.

No

extension

of

\mathbb{Q}_{2}

has

Galois

 group

isomorphic

 to

(\mathbb{Z} / 2 \mathbb{Z})^{4}

or

(\mathbb{Z} / 4 \mathbb{Z})^{3}.

Proof.

There are exactly

7

quadratic extensions of

\mathbb{Q}_{2};

it follows that no extension of

\mathbb{Q}_{2}

has Galois group

(\mathbb{Z} / 2 \mathbb{Z})^{4},

since this group has

15

subgroups of index

 2

whose fixed fields would yield

15

distinct quadratic extension of

\mathbb{Q}_{2}.

There are only finitely many extensions of

\mathbb{Q}_{2}

of any fixed degree

d,

and these can be enumerated by considering Eisenstein polynomials in

\mathbb{Q}_{2}[x]

of degrees dividing

d

up to an equivalence relation implied by Krasner’s lemma。 One finds that there are

59

quartic extensions of

\mathbb{Q}_{2},

of which

12

are cyclic。 It follows that no extension of

\mathbb{Q}_{2}

has Galois group

(\mathbb{Z} / 4 \mathbb{Z})^{3},

since this group has

28

subgroups whose fixed fields would yield

28

distinct cyclic quartic extensions of

\mathbb{Q}_{2}.

\square